Lethenteron kessleri, Siberian brook lamprey : bait

You can sponsor this page

Lethenteron kessleri (Anikin, 1905)

Siberian brook lamprey
Upload your photos and videos
Pictures | Google image
Image of Lethenteron kessleri (Siberian brook lamprey)
Lethenteron kessleri
Male picture by FAO

Classification / Names Nomi Comuni | Sinonimi | Catalog of Fishes(Genere, Specie) | ITIS | CoL | WoRMS | Cloffa

> Petromyzontiformes (Lampreys) > Petromyzontidae (Northern lampreys) > Lampetrinae
Etymology: Lethenteron: Etymology not explained, perhaps lethalis (L.), lethal, or lethe (Gr.), forgetting or forgetfulness; enteron (Gr.) intestine, presumably referring to “degenerate and non-functional” intestine of adult L. appendix. (See ETYFish);  kessleri: Patronym not identified but probably in honor of German-Russian zoologist Karl Fedorovich Kessler (1815-1881), who described Caspiomyzon wagneri in 1870. (See ETYFish).

Environment: milieu / climate zone / depth range / distribution range Ecologia

; acqua dolce demersale; non migratori. Temperate; 5°C - 25°C (Ref. 12468); 78°N - 53°N, 55°E - 169°W

Distribuzione Stati | Aree FAO | Ecosystems | Presenze | Point map | Introduzioni | Faunafri

Asia: Throughout Siberia to the Anadyr and Sakhalin (Ref. 26334). Specimens identified as Lethenteron kessleri from the Arctic basin refer to Lethenteron reissneri (Ref. 59043).

Length at first maturity / Size / Peso / Age

Maturity: Lm 12.4, range 11 - 13.27 cm
Max length : 26.0 cm TL maschio/sesso non determinato; (Ref. 12323); Età massima riportata: 7 anni (Ref. 12323)

Short description Morfologia | Morfometria

Adults: 11.2-23.0 cm TL. Body proportions, as percentage of TL (based on 300 specimens measuring 15.3-23.0 cm TL; the values given below represent ranges of means based on samples of 50 specimens): prebranchial length, 11.2-12.0; branchial length, 9.5-9.6 (8.9-11.9 absolute range, Iwata et al. (1985) based on 97 specimens 11.2-18.4 cm TL); trunk length, 48.8 (derived by deduction); tail length, 29.1-30.9; eye length, 2.1-2.2; disc length, 5.6-6.0. The intestinal diameter is less than 1.0 mm. Urogenital papilla length, as a percentage of branchial length, in three spawning males measuring 14.7-16.9 cm TL, 5.9-10.0 [5.8-34.7, Iwata et al. (1985) based on 23 spawning males 12.1-16.0 cm TL]. Succeeding counts/descriptions in parentheses are of resident L. camtschaticum form sensu Kucheryavyi et al. (2007): Trunk myomeres, 65-73 (57-78). Dentition: supraoral lamina, 2 unicuspid teeth, rarely 3; infraoral lamina, 5-10 teeth, usually 6-8, the lateralmost unicuspid or bicuspid (one or both rarely unicuspid) and occasionally some of the internal ones also bicuspid, the rest unicuspid; 3 endolaterals on each side; endolateral formula, typically 2-2-2, variant formulae, 2-2-1 and 2-1-2 (also 2-2-2-2); 2 rows of anterials; first row of anterials, 3-5 unicuspid teeth; total number of anterials, 15-28 (8-30) unicuspid teeth; exolaterals usually absent, but if present, only 1 unicuspid tooth per lateral field; single row of posterials consisting of 16-25 (as low as 12) unicuspid teeth, sometimes completely absent; transverse lingual lamina, numerous unicuspid teeth, the median one enlarged; longitudinal lingual laminae parentheses-shaped, each with numerous unicuspid teeth. Velar tentacles, 7. Body coloration of live specimen, brownish on dorsal and lateral aspects and whitish on the ventral aspect. Second dorsal fin with a dark blotch near the apex; however, specimens from Japan do not have a dark blotch. Extent of caudal fin pigmentation, rarely absent or trace, usually 75% or more. Caudal fin shape, spade-like.

Biologia     Glossario (es. epibenthic)

In Europe the upper courses of rivers, in Siberia also in lakes and lowland rivers (Ref. 12323). Freshwater, in rivers, brooks, and lakes. Ammocoetes live in oozy substrate. Metamorphosing ammocoetes are mostly found in areas with abundant aquatic vegetation at the mouth of small streams (Ref. 89241). Ammocoetes feed on detritus, green algae, diatoms, and zooplankton (Ref. 12323. 89241). Larval life lasts 6+ yrs. Onset of metamorphosis is at the end of July beginning of August and is complete at the end of October to the middle of November. The population in the upper Irtysh River Basin is apparently unique among lampreys in that it continues to feed during metamorphosis gradually switching from a detritus and unicellular algae diet to an exclusively unicellular algae diet. This would explain the fact that the maximum total length of the metamorphosing ammocoete exceeds the maximum total length of the ammocoete; mean of 233 mm in the former versus 218 in the latter. Unicellular algae consumed include Cyanophyceae (Oscillatoria), Chlorophyceae (Spirogyra, Chlorella), and Diatomeae (Fragilaria, Pinnularia). This phenomenon is particularly interesting as it implies that the metamorphosing ammocoetes must switch from a filter-feeding mode to a grazing mode of feeding, since, during the process of metamorphosis, the oral cirrhi are lost. The grazing may be achieved possibly with the help of the lingual laminae and the action of the piston cartilage (Ref. 89241). Adults are nonparasitic (Ref. 89241, 12323). Spawning period in Japan in early May. Fecundity, 1,387-2,125 eggs/female in Japan, with long diameter of eggs varying from 1.12 to 1.22 mm and the short diameter from 0.91 to 1.11 mm. Kucheryavyi et al. (2007) reported a fecundity of 468-3,441 eggs/female in non-feeding adult stage resident L. camtschaticum (= L. kessleri?) on Kamchatka (Ref. 89241). Ammocoetes used as lures for bait casting (Ref. 12323).

Life cycle and mating behavior Maturità | Riproduzione | Deposizione | Uova | Fecundity | Larve

Main reference Upload your references | Bibliografia | Coordinatore | Collaboratori

Holcík, J., 1986. Lethenteron kessleri (Anikin, 1905). p. 220-236. In J. Holcík (ed.) The Freshwater fishes of Europe. Vol.1, Part I, Petromyzontiformes. (Ref. 12323)

IUCN Red List Status (Ref. 130435)


CITES

Not Evaluated

CMS (Ref. 116361)

Not Evaluated

Threat to humans

  Harmless





Human uses

Pesca: di nessun interesse; esca: usually
FAO - Publication: search | FishSource |

Informazioni ulteriori

Stati
Aree FAO
Ecosystems
Presenze
Introduzioni
Stocks
Ecologia
Dieta
Prede
Consumo di cibo
Razione
Nomi Comuni
Sinonimi
Metabolismo
Predatori
Ecotossicologia
Riproduzione
Maturità
Deposizione
Spawning aggregation
Fecundity
Uova
Egg development
Age/Size
Accrescimento
Length-weight
Length-length
Length-frequencies
Morfometria
Morfologia
Larve
Dinamica popolazioni larvali
Reclutamento
Abbondanza
BRUVS
Bibliografia
Acquacoltura
Profilo di acquacoltura
Varietà
Genetica
Electrophoreses
Ereditarietà
Malattie
Elaborazione
Nutrients
Mass conversion
Collaboratori
Immagini
Stamps, Coins Misc.
Suoni
Ciguatera
Velocità
Modalità di nuoto
Area branchiale
Otoliths
Cervelli
Vista

Strumenti

Special reports

Download XML

Fonti Internet

AFORO (otoliths) | Aquatic Commons | BHL | Cloffa | BOLDSystems | Websites from users | Check FishWatcher | CISTI | Catalog of Fishes: Genere, Specie | DiscoverLife | ECOTOX | FAO - Publication: search | Faunafri | Fishipedia | Fishtrace | GenBank: genome, nucleotide | GloBI | Google Books | Google Scholar | Google | IGFA World Record | MitoFish | Otolith Atlas of Taiwan Fishes | PubMed | Reef Life Survey | Socotra Atlas | Tree of Life | Wikipedia: Go, ricerca | World Records Freshwater Fishing | Zoological Record

Estimates based on models

Phylogenetic diversity index (Ref. 82804):  PD50 = 0.5039   [Uniqueness, from 0.5 = low to 2.0 = high].
Bayesian length-weight: a=0.00126 (0.00056 - 0.00284), b=2.99 (2.80 - 3.18), in cm total length, based on LWR estimates for this (Sub)family-body shape (Ref. 93245).
Trophic level (Ref. 69278):  2.2   ±0.14 se; based on food items.
Resilienza (Ref. 120179):  Basso, tempo minimo di raddoppiamento della popolazione 4.5 - 14 anni (tmax=tm=7).
Fishing Vulnerability (Ref. 59153):  Low vulnerability (16 of 100).