Coptodon ejagham : fisheries

You can sponsor this page

Coptodon ejagham (Dunz & Schliewen, 2010)

Upload your photos and videos
Google image
Image of Coptodon ejagham
No image available for this species;
drawing shows typical species in Cichlidae.

Classification / Names Common names | Synonyms | Catalog of Fishes(genus, species) | ITIS | CoL | WoRMS | Cloffa

Teleostei (teleosts) > Cichliformes (Cichlids, convict blennies) > Cichlidae (Cichlids) > Pseudocrenilabrinae
Etymology: ejagham: The species name ejagham refers both to Lake Ejagham as well as to the Ejagham people, whose major sacred site is Lake Ejagham; a noun in apposition (Ref. 85854).

Environment: milieu / climate zone / depth range / distribution range Ecology

Freshwater; benthopelagic. Tropical

Distribution Countries | FAO areas | Ecosystems | Occurrences | Point map | Introductions | Faunafri

Africa: Lake Ejagham in Cameroon (Ref. 85854).

Size / Weight / Age

Maturity: Lm ?  range ? - ? cm
Max length : 20.0 cm SL male/unsexed; (Ref. 85854)

Short description Morphology | Morphometrics

Dorsal spines (total): 15 - 16; Dorsal soft rays (total): 10-12; Anal spines: 3; Anal soft rays: 8 - 10. Diagnosis: Coptodon ejagham differs from Tilapia species, except Coelotilapia joka and Congolapia bilineata, and all members of the genus Coptodon in tricuspid, rarely quadricuspid, pharyngeal teeth in the posterior two rows of lower pharyngeal jaw (Ref. 85854). It differs from Coelotilapia joka in more gill rakers on first ceratobranchial, 9-10 vs. 6-8; from Congolapia bilineata in not having a densely scaled caudal fin; it differs from Coptodon walteri, C. rendalli, C. congica and C. dageti in lower body depth, 33.8-40.6% of standard length vs. 41.4-51.3%; from C. cameronensis in lesser number of dorsal rays, 10-12 vs. 13-14; from C. kottae in narrower interorbital width, 9.2-12.2% of standard length vs. 12.4-14.0%; from C. imbriferna in shorter head length, 32.6-39.7% of standard length vs. 40.1-42.6%; from C. thysi in higher number of gill rakers on first ceratobranchial, 9-10 vs. 7-8; from C. snyderae in longer snout length, 13.5-16.9% of standard length vs. 11.3-13.3%; from C. bakossiorum in higher cheek depth, 12.0-15.4% of standard length vs. 8.7-11.2%; from C. bythobates in shorter caudal peduncle length, 12.6-15.7% of standard length vs. 15.9-17.5%; from C. guineensis, C. margaritacea, C. discolor, C. tholloni, C. flava, and C. gutturosa in a lower caudal peduncle depth, 13.0-15.1% of standard length vs. 15.2-19.2%; from C. ismailiaensis, C. camerunensis, C. coffea, C. louka, and C. nyongana in greater lower jaw length, 12.4-16.2% of standard length vs. 7.8-12.2%; and from C. bemini in robust, non-spatulate outer row jaw teeth, vs. gracile spatulate teeth (Ref. 85854). It differs from C. deckerti in shorter eye length, 6.2-8.4% of standard length vs. 8.5-10.7%; from C. nigrans in flank scales with dark scale margins and a light centre, especially on scales below the lateral line, vs. dark square-shaped blotches at base of each flank scale, filled or with a light coloured window at centre of blotch; and from C. fusiforme in greater snout length, 13.5-16.9% of standard length vs. 10.3-13.3% (Ref. 85854). Coptodon spongotroktis is distinguishable by combination of characters: interorbital width, lower jaw length and caudal peduncle length; C. zillii is distinguished by a combination of characters: anal spine length, length of last dorsal spine, snout length, lower jaw length, caudal peduncle depth and head length (Ref. 85854).

Biology     Glossary (e.g. epibenthic)

Pairs breed exclusively in the shallow inshore region above 2 m; pairs excavate large nest-pits under large branches or logs (Ref. 85854). Non-breeding Coptodon ejagham are moving solitarily and are and appear to permanently scan their environment for prey while swimming permanently without a hast, and rarely being motionless (Ref. 85854). Observations suggest that this species are predators of small fish, mostly juvenile cichlids (Ref. 85854).

Life cycle and mating behavior Maturity | Reproduction | Spawning | Eggs | Fecundity | Larvae

Main reference Upload your references | References | Coordinator : Kullander, Sven O. | Collaborators

Dunz, A.R. and U.K. Schliewen, 2013. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as "Tilapia". Mol. Phylogenet. Evol. 68(1):64-80. (Ref. 93285)

IUCN Red List Status (Ref. 130435)

  Critically Endangered (CR) (B1ab(iii)+2ab(iii)); Date assessed: 09 March 2023

CITES

Not Evaluated

CMS (Ref. 116361)

Not Evaluated

Threat to humans

  Harmless





Human uses

Fisheries:
FAO - Publication: search | FishSource |

More information

Countries
FAO areas
Ecosystems
Occurrences
Introductions
Stocks
Ecology
Diet
Food items
Food consumption
Ration
Common names
Synonyms
Metabolism
Predators
Ecotoxicology
Reproduction
Maturity
Spawning
Spawning aggregation
Fecundity
Eggs
Egg development
Age/Size
Growth
Length-weight
Length-length
Length-frequencies
Morphometrics
Morphology
Larvae
Larval dynamics
Recruitment
Abundance
BRUVS
References
Aquaculture
Aquaculture profile
Strains
Genetics
Electrophoreses
Heritability
Diseases
Processing
Nutrients
Mass conversion
Collaborators
Pictures
Stamps, Coins Misc.
Sounds
Ciguatera
Speed
Swim. type
Gill area
Otoliths
Brains
Vision

Tools

Special reports

Download XML

Internet sources

AFORO (otoliths) | Aquatic Commons | BHL | Cloffa | BOLDSystems | Websites from users | Check FishWatcher | CISTI | Catalog of Fishes: genus, species | DiscoverLife | ECOTOX | FAO - Publication: search | Faunafri | Fishipedia | Fishtrace | GenBank: genome, nucleotide | GloBI | Google Books | Google Scholar | Google | IGFA World Record | MitoFish | Otolith Atlas of Taiwan Fishes | PubMed | Reef Life Survey | Socotra Atlas | Tree of Life | Wikipedia: Go, Search | World Records Freshwater Fishing | Zoological Record

Estimates based on models

Phylogenetic diversity index (Ref. 82804):  PD50 = 0.5000   [Uniqueness, from 0.5 = low to 2.0 = high].
Bayesian length-weight: a=0.01000 (0.00244 - 0.04107), b=3.04 (2.81 - 3.27), in cm total length, based on all LWR estimates for this body shape (Ref. 93245).
Trophic level (Ref. 69278):  2.5   ±0.1 se; based on size and trophs of closest relatives
Resilience (Ref. 120179):  High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.).
Fishing Vulnerability (Ref. 59153):  Low vulnerability (14 of 100).